Analysis

Inhaltsverzeichnis


1. Metrische Räume. Topologische Grundbegriffe.- 1.1 Der n-dimensionale euklidische Raum ?n.- 1.2 Konvergenz. Satz von Bolzano-Weierstraß.- 1.3 Die Regeln von de Morgan.- 1.4 Äquivalenzrelation.- 1.5 Metrischer Raum.- 1.6 Konvergenz und Vollständigkeit.- 1.7 Normierter Raum und Banachraum.- 1.8 Die Maximumnorm.- 1.9 Innenproduktraum und Hilbertraum.- 1.10 Der Hilbertsche Folgenraum l2.- 1.11 Innerer Punkt, Randpunkt, Häufungspunkt.- 1.12 Offene und abgeschlossene Mengen.- 1.13 Satz über Inneres, Rand und abgeschlossene Hülle.- 1.14 Charakterisierung der abgeschlossenen Hülle.- 1.15 Metrischer Teilraum.- 1.16 Kompakte Mengen.- 1.17 Abstand zwischen Mengen. Umgebungen von Mengen.- 1.18 Orthogonalität und Winkel im ?n.- 1.19 Unterräume und Ebenen im ?n.- 1.20 Gerade, Strecke, Polygonzug.- 1.21 Hyperebenen und Halbräume.- 1.22 Konvexe Mengen.- 1.23 Konvexe Funktionen.- Aufgaben.-
2. Grenzwert und Stetigkeit.- 2.1 Grenzwert und Stetigkeit.- 2.2 Schwankung einer Funktion. Limes superior und Limes inferior.- 2.3 Stetigkeitsmodul.- 2.4 Komposition stetiger Funktionen.- 2.5 Stetige vektor- und skalarwertige Funktionen.- 2.6 Polynome in mehreren Veränderlichen.- 2.7 Stetigkeit bezüglich einzelner Veränderiichen.- 2.8 Lineare Abbildungen.- 2.9 Stetigkeit und Kompaktheit.- 2.10 Extremwerte bezüglich einzelner Variablen.- 2.11 Satz über die gleichmäßige Stetigkeit.- 2.12 Satz über die Stetigkeit der Umkehrfunktion.- 2.13 Das Halbierungs verfahren.- 2.14 Offene Überdeckungen kompakter Mengen.- 2.15 Gleichmäßige Konvergenz.- 2.16 Satz von Dini.- 2.17 Weierstraßsches Majorantenkriterium.- 2.18 Potenzreihen in mehreren Veränderiichen.- 2.19 Fortsetzung stetiger Funktionen. Satz von Tietze.- 2.20 Landau-Symbole.- Aufgaben.-
3. Differentialrechnung in mehreren Veränderlichen.- 3.1 Partielle Ableitungen. Gradient.- 3.2 Graphische Darstellung einer Funktion. Höhenlinien.- 3.3 Vertauschung der Reihenfolge der Differentiation.- 3.4 Der allgemeine Fall.- 3.5 Funktionalmatrix und Funktionaldeterminante.- 3.6 Höhere Ableitungen. Die KlassenCk.- 3.7 Lineare Differentialoperatoren.- 3.8 Differenzierbarkeit und vollständiges Differential.- 3.9 Satz über Stetigkeit.- 3.10 Die Kettenregel.- 3.11 Der Mittelwertsatz der Differentialrechnung.- 3.12 Richtungsableitungen.- 3.13 Der Satz von Taylor.- 3.14 Das Taylorpolynom.- 3.15 Die Taylorsche Reihe.- 3.16 Fläche und Tangentialhyperebene.- 3.17 Die Hessematrix.- 3.18 Differentiation im Komplexen. Holomorphie.- 3.19 Cauchy-Riemannsche Differentialgleichungen.- 3.20 Bewegung, winkeltreue und konforme Abbildung.- Aufgaben.-
4. Implizite Funktionen. Maxima und Minima.- 4.1 Fixpunkte kontrahierender Abbildungen. Kontraktionsprinzip.- 4.2 Einige Hilfsmittel. Lipschitzbedingung im ?n.- 4.3 Das Newton-Verfahren.- 4.4 Implizite Funktionen.- 4.5 Satz über implizite Funktionen.- 4.6 Umkehrabbildungen. Diffeomorphismen.- 4.7 Offene Abbildungen.- 4.8 Quadratische Formen.- 4.9 Maxima und Minima.- 4.10 Das Fermatsche Kriterium für lokale Extrema.- 4.11 Hinreichende Bedingung für ein Extremum.- 4.12 Extrema mit Nebenbedingungen.- 4.13 Lagrangesche Multiplikatorenregel.- 4.14 Corollar (Lagrangesche Multiplikatorenregel).- 4.15 Lokale Klassifikation von glatten Funktionen.- 4.16 Lenmia von Marston Morse.- Aufgaben.-
5. Allgemeine Limestheorie. Wege und Kurven.- 5.1 Gerichtete Menge und Netz.- 5.2 Der Grenzwert eines Netzes.- 5.3 Konvergenzkriterium von Cauchy.- 5.4 Reellwertige Netze.- 5.5 Monotone Netze.- 5.6 Das Riemann-Integral als Netzlimes.- 5.7 Netzlimes für Teilintervalle.- 5.8 Konfinale Teilfolgen.- 5.9 Metrische Ordnung und Riemannsche Summendefinition des Integrals.- Wege und Kurven.- 5.10 Weg und Kurve.- 5.11 Die Weglänge.- 5.12 Die Weglänge als Funktion von t.- 5.13 Äquivalente Darstellungen, Orientierung.- 5.14 Die Länge einer Kurve.- 5.15 Die Bogenlänge als Parameter.- 5.16 Tangente und Normalenebene.- 5.17 Ebene Kurven, positive Normalen.- 5.18 Krümmung und Krümmungsradius.- 5.19 Ebene Kurven.- 5.20 Funktionen von beschränkter Variation.- 5.21 Darstellungssatz von C, Jordan.- 5.22 Satz über Rektifizierbarkeit.- Anwendung: Die Keplerschen Gesetze der Planetenbewegung.- 5.23 Die Bewegungsgleichungen.- 5.24 Die Lösung des Zweikörperproblems.- 5.25 Satz über das Zweikörperproblem.- 5.26 Eindeutigkeitssatz.- 5.27 Historisches zu den Keplerschen Gesetzen.- Aufgaben.-
6. Das Riemann-Stieltjes-Integral. Kurven- und Wegintegrale.- 6.1 Das Riemann-Stieltjes-Integral.- 6.2 Eigenschaften des Riemann-Stieltjes-Integrals.- 6.3 Partielle Integration.- 6.4 Transformation in ein Riemann-Integral.- 6.5 Weitere Beispiele.- 6.6 Bemerkungen.- 6.7 Mittelwertsätze für Riemann-Stieltjes-Integrale.- 6.8 Zweiter Mittelwertsatz für Riemannsche Integrale.- 6.9 Kurvenintegrale bezüglich der Bogenlänge.- 6.10 Eigenschaften von Kurvenintegralen.- 6.11 Anwendungen: Masse, Schwerpunkt, Trägheitsmoment.- 6.12 Wegintegrale.- 6.13 Eigenschaften und Rechenregeln für Wegintegrale.- 6.14 Vektorfelder.- 6.15 Bewegung in einem Kraftfeld.- 6.16 Gradientenfelder. Stammfunktion und Potential.- 6.17 Die Integrabilitätsbedingung.- 6.18 Nochmals Kraftfelder.- 6.19 Komplexe Wegintegrale.- 6.20 Integralsatz von Cauchy.- 6.21 Satz über Stammfunktionen.- Aufgaben.-
7. Jordanscher Inhalt und Riemannsches Integral im ?n.- 7.1 Anforderungen an den Inhaltsbegriff.- 7.2 Zerlegungen eines Intervalls.- 7.3 Intervallsunmien.- 7.4 Äußerer und innerer Inhalt. Jordan-Inhalt.- 7.5 Würfelsummen.- 7.6 Quadrierbare Mengen. Satz.- 7.7 Produktmengen, Produktregel.- 7.8 Abbildungen von Mengen.- 7.9 Lineare Abbildungen.- Das Riemann-Integral im ?n.- 7.10 Definition und einfache Eigenschaften des Integrals.- 7.11 Satz über gliedweise Integration.- 7.12 Jordanscher Inhalt und Riemannsches Integral.- 7.13 Die Riemannsche Summendefinition des Integrals.- 7.14 Parameterabhängige Integrale.- 7.15 Iterierte Integrale. Der Satz von Fubini.- 7.16 Das Cavalierische Prinzip.- 7.17 Die Abbildung von Gebieten. Das Lemma von Sard.- 7.18 Transformation von Integralen. Die Substitutionsregel.- 7.19 Beispiele. 1. Ebene Polarkoordinaten. 2. Zylinderkoordinaten.- 3. Kugelkoordinaten. 4. Polarkoordinaten im ?n.- 7.20 Uneigentliche Integrale.- 7.21 Beispiele. Die Eulersche Betafunktion.- 7.22 Die Faltung.- 7.23 Approximation durch C? -Funktionen. Mittelwerte.- 7.24 Der Weierstraßsche Approximationssatz.- 7.25 Masse und Schwerpunkt.- 7.26 Potential einer Massenbelegung.- 7.27 Rotationssynmietrische Massenbelegungen.- Aufgaben.-
8. Die Integralsätze von Gauß, Green und Stokes.- 8.1 Gaußscher Integralsatz in der Ebene.- 8.2 Vektorprodukt und Parallelogranmifläche.- 8.3 Flächen im ?n.- 8.4 Der Inhalt einer Fläche im ?n.- 8.5 Oberflächenintegrale.- 8.6 Gaußscher Integralsatz im ?n.- 8.7 Physikalische Bedeutung des Gaußschen Satzes. Geschwindigkeitsfelder.- Wärmeleitung.- 8.8 Gramsche Matrizen und Determinanten.- 8.9 Der Inhalt von m-dimensionalen Flächen im ?n.- 8.10 DerFall m = n-l.- 8.11 Die Rotation eines Vektorfeldes.- 8.12 Der Satz von Stokes.- Aufgaben.-
9. Das Lebesgue-Integral.- 9.1 Mathematische Vorbereitung. Das Rechnen in ?.- 9.2 Intervalle. Darstellung von offenen Mengen.- 9.3 Mengen. Algebren und ?-Algebren.- 9.4 Das äußere Lebesgue-Maß.- 9.5 Das Lebesguesche Maß. Hauptsatz.- 9.6 Offene Mengen und G?-Mengen.- 9.7 Das Lebesguesche Integral im ?n.- 9.8 Nichtnegative Funktionen.- 9.9 Meßbare Funktionen.- 9.10 Treppenfunktionen und Elementarfunktionen.- 9.11 Meßbarkeit und Integrierbarkeit.- 9.12 Funktionen mit Werten in ?p und ?.- 9.13 Satz von Beppo Levi.- 9.14 Satz von der majorisierten Konvergenz.- 9.15 Lemma von Fatou.- 9.16 Das Prinzip von Cavalieri.- 9.17 Die Produktformel.- 9.18 Satz von Fubini.- 9.19 Die Substitutionsregel.- 9.20 Die ?p-Räume. Höldersche und Minkowskische Ungleichung.- 9.21 Dichtesatz.- Das Lebesgue-Integrai in ?.- 9.22 Absolutstetige Funktionen.- 9.23 Hauptsatz der Differential- und Integralrechnung.- 9.24 Überdeckungssatz von Vitali.- 9.25 Satz über das Maß der Bildmenge.- 9.26 Satz über Differenzierbarkeit monotoner Funktionen.- 9.27 Satz über das Integral der Ableitung.- 9.28 Abschluß des Beweises.- 9.29 Satz über Absolutstetigkeit.- 9.30 Partielle Integration.- 9.31 Die Substitutionsregel für n = 1.- 9.32 Ausblicke.- 1. Integration in abstrakten Maßräumen..- 2. Das Lebesgue-Stieltjes-Maß.- 3. Der Fall n = 1.4. Integration im Banachraum. Das Bochner-Integral.- Aufgaben.-
10. Fourierreihen.- 10.1 Trigonometrische Reihe und Fourierreihe. Rechenregeln.- 10.2 Satz von Riemann-Lebesgue.- 10.3 Satz.- 10.4 Konvergenzsatz.- 10.5 Konvergenzsatz für Sprungstellen.- 10.6 Gerade und ungerade Fortsetzung.- 10.7 Umrechnung auf andere Periodenlängen.- 10.8 Riemannscher Lokalisationssatz.- 10.9 Gleichmäßige Konvergenz.- Die Hilbertraumtheorie der Fourierreihen.- 10.10 Orthonormalfolgen im Hilbertraum.- 10.11 Fourierreihen bezüglich einer Orthonormalfolge.- 10.12 Konvergenzsatz.- 10.13 Vollständigkeit einer Orthonormalfolge.- 10.14 Der Hilbertraum chen cong thuc.- 10.15 Satz über Konvergenz im quadratischen Mittel.- 10.16 Nochmals Absolutkonvergenz.- Aufgaben.- Lösungen und Lösungshinweise zu ausgewählten Aufgaben.- Literatur.- Bezeichnungen.- Namen- und Sachverzeichnis.
- 21%
Springer-Lehrbuch

Analysis

Buch (Taschenbuch)

21% sparen

29,95 € UVP 37,99 €

inkl. gesetzl. MwSt.

Analysis

Ebenfalls verfügbar als:

Taschenbuch

Taschenbuch

ab 29,95 €
eBook

eBook

ab 20,67 €

Beschreibung

Details

Einband

Taschenbuch

Erscheinungsdatum

06.03.2002

Verlag

Springer Berlin

Seitenzahl

408

Maße (L/B/H)

23,5/15,5/2,4 cm

Beschreibung

Details

Einband

Taschenbuch

Erscheinungsdatum

06.03.2002

Verlag

Springer Berlin

Seitenzahl

408

Maße (L/B/H)

23,5/15,5/2,4 cm

Gewicht

1320 g

Auflage

5. erweiterte Auflage 2002

Sprache

Deutsch

ISBN

978-3-540-42953-1

Das meinen unsere Kund*innen

0.0

0 Bewertungen

Informationen zu Bewertungen

Zur Abgabe einer Bewertung ist eine Anmeldung im Kund*innenkonto notwendig. Die Authentizität der Bewertungen wird von uns nicht überprüft. Wir behalten uns vor, Bewertungstexte, die unseren Richtlinien widersprechen, entsprechend zu kürzen oder zu löschen.

Verfassen Sie die erste Bewertung zu diesem Artikel

Helfen Sie anderen Kund*innen durch Ihre Meinung

Erste Bewertung verfassen

Unsere Kund*innen meinen

0.0

0 Bewertungen filtern

Weitere Artikel finden Sie in

  • Analysis

  • 1. Metrische Räume. Topologische Grundbegriffe.- 1.1 Der n-dimensionale euklidische Raum ?n.- 1.2 Konvergenz. Satz von Bolzano-Weierstraß.- 1.3 Die Regeln von de Morgan.- 1.4 Äquivalenzrelation.- 1.5 Metrischer Raum.- 1.6 Konvergenz und Vollständigkeit.- 1.7 Normierter Raum und Banachraum.- 1.8 Die Maximumnorm.- 1.9 Innenproduktraum und Hilbertraum.- 1.10 Der Hilbertsche Folgenraum l2.- 1.11 Innerer Punkt, Randpunkt, Häufungspunkt.- 1.12 Offene und abgeschlossene Mengen.- 1.13 Satz über Inneres, Rand und abgeschlossene Hülle.- 1.14 Charakterisierung der abgeschlossenen Hülle.- 1.15 Metrischer Teilraum.- 1.16 Kompakte Mengen.- 1.17 Abstand zwischen Mengen. Umgebungen von Mengen.- 1.18 Orthogonalität und Winkel im ?n.- 1.19 Unterräume und Ebenen im ?n.- 1.20 Gerade, Strecke, Polygonzug.- 1.21 Hyperebenen und Halbräume.- 1.22 Konvexe Mengen.- 1.23 Konvexe Funktionen.- Aufgaben.-
    2. Grenzwert und Stetigkeit.- 2.1 Grenzwert und Stetigkeit.- 2.2 Schwankung einer Funktion. Limes superior und Limes inferior.- 2.3 Stetigkeitsmodul.- 2.4 Komposition stetiger Funktionen.- 2.5 Stetige vektor- und skalarwertige Funktionen.- 2.6 Polynome in mehreren Veränderlichen.- 2.7 Stetigkeit bezüglich einzelner Veränderiichen.- 2.8 Lineare Abbildungen.- 2.9 Stetigkeit und Kompaktheit.- 2.10 Extremwerte bezüglich einzelner Variablen.- 2.11 Satz über die gleichmäßige Stetigkeit.- 2.12 Satz über die Stetigkeit der Umkehrfunktion.- 2.13 Das Halbierungs verfahren.- 2.14 Offene Überdeckungen kompakter Mengen.- 2.15 Gleichmäßige Konvergenz.- 2.16 Satz von Dini.- 2.17 Weierstraßsches Majorantenkriterium.- 2.18 Potenzreihen in mehreren Veränderiichen.- 2.19 Fortsetzung stetiger Funktionen. Satz von Tietze.- 2.20 Landau-Symbole.- Aufgaben.-
    3. Differentialrechnung in mehreren Veränderlichen.- 3.1 Partielle Ableitungen. Gradient.- 3.2 Graphische Darstellung einer Funktion. Höhenlinien.- 3.3 Vertauschung der Reihenfolge der Differentiation.- 3.4 Der allgemeine Fall.- 3.5 Funktionalmatrix und Funktionaldeterminante.- 3.6 Höhere Ableitungen. Die KlassenCk.- 3.7 Lineare Differentialoperatoren.- 3.8 Differenzierbarkeit und vollständiges Differential.- 3.9 Satz über Stetigkeit.- 3.10 Die Kettenregel.- 3.11 Der Mittelwertsatz der Differentialrechnung.- 3.12 Richtungsableitungen.- 3.13 Der Satz von Taylor.- 3.14 Das Taylorpolynom.- 3.15 Die Taylorsche Reihe.- 3.16 Fläche und Tangentialhyperebene.- 3.17 Die Hessematrix.- 3.18 Differentiation im Komplexen. Holomorphie.- 3.19 Cauchy-Riemannsche Differentialgleichungen.- 3.20 Bewegung, winkeltreue und konforme Abbildung.- Aufgaben.-
    4. Implizite Funktionen. Maxima und Minima.- 4.1 Fixpunkte kontrahierender Abbildungen. Kontraktionsprinzip.- 4.2 Einige Hilfsmittel. Lipschitzbedingung im ?n.- 4.3 Das Newton-Verfahren.- 4.4 Implizite Funktionen.- 4.5 Satz über implizite Funktionen.- 4.6 Umkehrabbildungen. Diffeomorphismen.- 4.7 Offene Abbildungen.- 4.8 Quadratische Formen.- 4.9 Maxima und Minima.- 4.10 Das Fermatsche Kriterium für lokale Extrema.- 4.11 Hinreichende Bedingung für ein Extremum.- 4.12 Extrema mit Nebenbedingungen.- 4.13 Lagrangesche Multiplikatorenregel.- 4.14 Corollar (Lagrangesche Multiplikatorenregel).- 4.15 Lokale Klassifikation von glatten Funktionen.- 4.16 Lenmia von Marston Morse.- Aufgaben.-
    5. Allgemeine Limestheorie. Wege und Kurven.- 5.1 Gerichtete Menge und Netz.- 5.2 Der Grenzwert eines Netzes.- 5.3 Konvergenzkriterium von Cauchy.- 5.4 Reellwertige Netze.- 5.5 Monotone Netze.- 5.6 Das Riemann-Integral als Netzlimes.- 5.7 Netzlimes für Teilintervalle.- 5.8 Konfinale Teilfolgen.- 5.9 Metrische Ordnung und Riemannsche Summendefinition des Integrals.- Wege und Kurven.- 5.10 Weg und Kurve.- 5.11 Die Weglänge.- 5.12 Die Weglänge als Funktion von t.- 5.13 Äquivalente Darstellungen, Orientierung.- 5.14 Die Länge einer Kurve.- 5.15 Die Bogenlänge als Parameter.- 5.16 Tangente und Normalenebene.- 5.17 Ebene Kurven, positive Normalen.- 5.18 Krümmung und Krümmungsradius.- 5.19 Ebene Kurven.- 5.20 Funktionen von beschränkter Variation.- 5.21 Darstellungssatz von C, Jordan.- 5.22 Satz über Rektifizierbarkeit.- Anwendung: Die Keplerschen Gesetze der Planetenbewegung.- 5.23 Die Bewegungsgleichungen.- 5.24 Die Lösung des Zweikörperproblems.- 5.25 Satz über das Zweikörperproblem.- 5.26 Eindeutigkeitssatz.- 5.27 Historisches zu den Keplerschen Gesetzen.- Aufgaben.-
    6. Das Riemann-Stieltjes-Integral. Kurven- und Wegintegrale.- 6.1 Das Riemann-Stieltjes-Integral.- 6.2 Eigenschaften des Riemann-Stieltjes-Integrals.- 6.3 Partielle Integration.- 6.4 Transformation in ein Riemann-Integral.- 6.5 Weitere Beispiele.- 6.6 Bemerkungen.- 6.7 Mittelwertsätze für Riemann-Stieltjes-Integrale.- 6.8 Zweiter Mittelwertsatz für Riemannsche Integrale.- 6.9 Kurvenintegrale bezüglich der Bogenlänge.- 6.10 Eigenschaften von Kurvenintegralen.- 6.11 Anwendungen: Masse, Schwerpunkt, Trägheitsmoment.- 6.12 Wegintegrale.- 6.13 Eigenschaften und Rechenregeln für Wegintegrale.- 6.14 Vektorfelder.- 6.15 Bewegung in einem Kraftfeld.- 6.16 Gradientenfelder. Stammfunktion und Potential.- 6.17 Die Integrabilitätsbedingung.- 6.18 Nochmals Kraftfelder.- 6.19 Komplexe Wegintegrale.- 6.20 Integralsatz von Cauchy.- 6.21 Satz über Stammfunktionen.- Aufgaben.-
    7. Jordanscher Inhalt und Riemannsches Integral im ?n.- 7.1 Anforderungen an den Inhaltsbegriff.- 7.2 Zerlegungen eines Intervalls.- 7.3 Intervallsunmien.- 7.4 Äußerer und innerer Inhalt. Jordan-Inhalt.- 7.5 Würfelsummen.- 7.6 Quadrierbare Mengen. Satz.- 7.7 Produktmengen, Produktregel.- 7.8 Abbildungen von Mengen.- 7.9 Lineare Abbildungen.- Das Riemann-Integral im ?n.- 7.10 Definition und einfache Eigenschaften des Integrals.- 7.11 Satz über gliedweise Integration.- 7.12 Jordanscher Inhalt und Riemannsches Integral.- 7.13 Die Riemannsche Summendefinition des Integrals.- 7.14 Parameterabhängige Integrale.- 7.15 Iterierte Integrale. Der Satz von Fubini.- 7.16 Das Cavalierische Prinzip.- 7.17 Die Abbildung von Gebieten. Das Lemma von Sard.- 7.18 Transformation von Integralen. Die Substitutionsregel.- 7.19 Beispiele. 1. Ebene Polarkoordinaten. 2. Zylinderkoordinaten.- 3. Kugelkoordinaten. 4. Polarkoordinaten im ?n.- 7.20 Uneigentliche Integrale.- 7.21 Beispiele. Die Eulersche Betafunktion.- 7.22 Die Faltung.- 7.23 Approximation durch C? -Funktionen. Mittelwerte.- 7.24 Der Weierstraßsche Approximationssatz.- 7.25 Masse und Schwerpunkt.- 7.26 Potential einer Massenbelegung.- 7.27 Rotationssynmietrische Massenbelegungen.- Aufgaben.-
    8. Die Integralsätze von Gauß, Green und Stokes.- 8.1 Gaußscher Integralsatz in der Ebene.- 8.2 Vektorprodukt und Parallelogranmifläche.- 8.3 Flächen im ?n.- 8.4 Der Inhalt einer Fläche im ?n.- 8.5 Oberflächenintegrale.- 8.6 Gaußscher Integralsatz im ?n.- 8.7 Physikalische Bedeutung des Gaußschen Satzes. Geschwindigkeitsfelder.- Wärmeleitung.- 8.8 Gramsche Matrizen und Determinanten.- 8.9 Der Inhalt von m-dimensionalen Flächen im ?n.- 8.10 DerFall m = n-l.- 8.11 Die Rotation eines Vektorfeldes.- 8.12 Der Satz von Stokes.- Aufgaben.-
    9. Das Lebesgue-Integral.- 9.1 Mathematische Vorbereitung. Das Rechnen in ?.- 9.2 Intervalle. Darstellung von offenen Mengen.- 9.3 Mengen. Algebren und ?-Algebren.- 9.4 Das äußere Lebesgue-Maß.- 9.5 Das Lebesguesche Maß. Hauptsatz.- 9.6 Offene Mengen und G?-Mengen.- 9.7 Das Lebesguesche Integral im ?n.- 9.8 Nichtnegative Funktionen.- 9.9 Meßbare Funktionen.- 9.10 Treppenfunktionen und Elementarfunktionen.- 9.11 Meßbarkeit und Integrierbarkeit.- 9.12 Funktionen mit Werten in ?p und ?.- 9.13 Satz von Beppo Levi.- 9.14 Satz von der majorisierten Konvergenz.- 9.15 Lemma von Fatou.- 9.16 Das Prinzip von Cavalieri.- 9.17 Die Produktformel.- 9.18 Satz von Fubini.- 9.19 Die Substitutionsregel.- 9.20 Die ?p-Räume. Höldersche und Minkowskische Ungleichung.- 9.21 Dichtesatz.- Das Lebesgue-Integrai in ?.- 9.22 Absolutstetige Funktionen.- 9.23 Hauptsatz der Differential- und Integralrechnung.- 9.24 Überdeckungssatz von Vitali.- 9.25 Satz über das Maß der Bildmenge.- 9.26 Satz über Differenzierbarkeit monotoner Funktionen.- 9.27 Satz über das Integral der Ableitung.- 9.28 Abschluß des Beweises.- 9.29 Satz über Absolutstetigkeit.- 9.30 Partielle Integration.- 9.31 Die Substitutionsregel für n = 1.- 9.32 Ausblicke.- 1. Integration in abstrakten Maßräumen..- 2. Das Lebesgue-Stieltjes-Maß.- 3. Der Fall n = 1.4. Integration im Banachraum. Das Bochner-Integral.- Aufgaben.-
    10. Fourierreihen.- 10.1 Trigonometrische Reihe und Fourierreihe. Rechenregeln.- 10.2 Satz von Riemann-Lebesgue.- 10.3 Satz.- 10.4 Konvergenzsatz.- 10.5 Konvergenzsatz für Sprungstellen.- 10.6 Gerade und ungerade Fortsetzung.- 10.7 Umrechnung auf andere Periodenlängen.- 10.8 Riemannscher Lokalisationssatz.- 10.9 Gleichmäßige Konvergenz.- Die Hilbertraumtheorie der Fourierreihen.- 10.10 Orthonormalfolgen im Hilbertraum.- 10.11 Fourierreihen bezüglich einer Orthonormalfolge.- 10.12 Konvergenzsatz.- 10.13 Vollständigkeit einer Orthonormalfolge.- 10.14 Der Hilbertraum chen cong thuc.- 10.15 Satz über Konvergenz im quadratischen Mittel.- 10.16 Nochmals Absolutkonvergenz.- Aufgaben.- Lösungen und Lösungshinweise zu ausgewählten Aufgaben.- Literatur.- Bezeichnungen.- Namen- und Sachverzeichnis.