Differentialgeometrie

Inhaltsverzeichnis

1. Lineare Geometrie.- 1.1 Reelle Yektorräume.- 1.2 Tensorräume.- 1.3 Euklidische Vektorräume.- 1.4 Affine Räume.- 2. Analysis.- 2.1 Topologische Räume.- 2.2 Differenzierbare Abbildungen.- 2.3 Immersionen, Einbettungen, Diffeomorphismen.- 2.4 Differenzierbare Vektorfelder.- 2.5 Integrale, Differentialgleichungen.- 3. Differentialgeometrie der Kurven in ?n.- 3.1 Kurvenbegriff.- 3.2 Ableitungsvektoren, Bogenlänge.- 3.3 Berührung von Kurven.- 3.4 Ableitungsgleichungen und Hauptsatz.- 3.5 Globale Probleme für Kurven in ?2.- 4. Flächen in ?n.- 4.1 Flächenbegriff.- 4.2 Tangentialvektorraum einer Fläche.- 4.3 Berührung von Flächen.- 4.4 Blätter in ?n.- 4.5 Parameterwechsel.- 5. Geometrie auf Flächen in ?n.- 5.1 Das metrische Tensorfeld.- 5.2 Kovariante Ableitung längs eines Flächenweges.- 5.3 Der induzierte Zusammenhang.- 5.4 Der Krümmungsoperator des induzierten Zusammenhangs.- 5.5 Abbildungen aus einem m-Blatt in ein m-Blatt.- 6. Krümmungstheorie der Flächen in ?n.- 6.1 Der Gauß-Operator.- 6.2 Die Weingarten-Abbildung.- 6.3 Der Krümmungstensor und der Codazzi-Operator.- 6.4 Krümmungstheorie der Hyperflächen.- 6.5 Hauptsatz und Integrabilitätsbedingungen der Hyperflächentheorie.- 7. 2-Flächen in ?3.- 7.1 Kurven auf 2-Flächen.- 7.2 Regelflächen in ?3.- 7.3 2-Flächen in ?3 mit konstanter Gaußscher Krümmung.- 7.4 Minimalflächen.- 8. Riemannsche Räume.- 8.1 Differenzierbare Mannigfaltigkeiten.- 8.2 Zerlegung der Eins auf differenzierbaren Mannigfaltigkeiten.- 8.3 Der Tangentialvektorraum.- 8.4 Zusammenhänge auf differenzierbaren Mannigfaltigkeiten.- 8.5 Metrische Tensorfelder auf differenzierbaren Mannigfaltigkeiten.- 8.6 Das Krümmungstensorfeld eines Riemannschen Raumes.- 8.7 Die Exponentialabbildung, die innere Metrik Riemannscher Räume.- 8.8 Die Integralformel von Gauß-Bonnet und globale Probleme für Riemannsche 2-Räume.- Literatur.   

Differentialgeometrie

Buch (Taschenbuch)

64,99 €

inkl. gesetzl. MwSt.

Differentialgeometrie

Ebenfalls verfügbar als:

Taschenbuch

Taschenbuch

ab 64,99 €
eBook

eBook

ab 38,66 €

Beschreibung

Details

Einband

Taschenbuch

Erscheinungsdatum

01.01.1981

Verlag

Vieweg & Teubner

Seitenzahl

424

Maße (L/B/H)

24,4/15,7/2,4 cm

Beschreibung

Details

Einband

Taschenbuch

Erscheinungsdatum

01.01.1981

Verlag

Vieweg & Teubner

Seitenzahl

424

Maße (L/B/H)

24,4/15,7/2,4 cm

Gewicht

703 g

Auflage

1981

Sprache

Deutsch

ISBN

978-3-528-03809-0

Das meinen unsere Kund*innen

0.0

0 Bewertungen

Informationen zu Bewertungen

Zur Abgabe einer Bewertung ist eine Anmeldung im Kund*innenkonto notwendig. Die Authentizität der Bewertungen wird von uns nicht überprüft. Wir behalten uns vor, Bewertungstexte, die unseren Richtlinien widersprechen, entsprechend zu kürzen oder zu löschen.

Verfassen Sie die erste Bewertung zu diesem Artikel

Helfen Sie anderen Kund*innen durch Ihre Meinung

Erste Bewertung verfassen

Unsere Kund*innen meinen

0.0

0 Bewertungen filtern

Weitere Artikel finden Sie in

  • Differentialgeometrie
  • 1. Lineare Geometrie.- 1.1 Reelle Yektorräume.- 1.2 Tensorräume.- 1.3 Euklidische Vektorräume.- 1.4 Affine Räume.- 2. Analysis.- 2.1 Topologische Räume.- 2.2 Differenzierbare Abbildungen.- 2.3 Immersionen, Einbettungen, Diffeomorphismen.- 2.4 Differenzierbare Vektorfelder.- 2.5 Integrale, Differentialgleichungen.- 3. Differentialgeometrie der Kurven in ?n.- 3.1 Kurvenbegriff.- 3.2 Ableitungsvektoren, Bogenlänge.- 3.3 Berührung von Kurven.- 3.4 Ableitungsgleichungen und Hauptsatz.- 3.5 Globale Probleme für Kurven in ?2.- 4. Flächen in ?n.- 4.1 Flächenbegriff.- 4.2 Tangentialvektorraum einer Fläche.- 4.3 Berührung von Flächen.- 4.4 Blätter in ?n.- 4.5 Parameterwechsel.- 5. Geometrie auf Flächen in ?n.- 5.1 Das metrische Tensorfeld.- 5.2 Kovariante Ableitung längs eines Flächenweges.- 5.3 Der induzierte Zusammenhang.- 5.4 Der Krümmungsoperator des induzierten Zusammenhangs.- 5.5 Abbildungen aus einem m-Blatt in ein m-Blatt.- 6. Krümmungstheorie der Flächen in ?n.- 6.1 Der Gauß-Operator.- 6.2 Die Weingarten-Abbildung.- 6.3 Der Krümmungstensor und der Codazzi-Operator.- 6.4 Krümmungstheorie der Hyperflächen.- 6.5 Hauptsatz und Integrabilitätsbedingungen der Hyperflächentheorie.- 7. 2-Flächen in ?3.- 7.1 Kurven auf 2-Flächen.- 7.2 Regelflächen in ?3.- 7.3 2-Flächen in ?3 mit konstanter Gaußscher Krümmung.- 7.4 Minimalflächen.- 8. Riemannsche Räume.- 8.1 Differenzierbare Mannigfaltigkeiten.- 8.2 Zerlegung der Eins auf differenzierbaren Mannigfaltigkeiten.- 8.3 Der Tangentialvektorraum.- 8.4 Zusammenhänge auf differenzierbaren Mannigfaltigkeiten.- 8.5 Metrische Tensorfelder auf differenzierbaren Mannigfaltigkeiten.- 8.6 Das Krümmungstensorfeld eines Riemannschen Raumes.- 8.7 Die Exponentialabbildung, die innere Metrik Riemannscher Räume.- 8.8 Die Integralformel von Gauß-Bonnet und globale Probleme für Riemannsche 2-Räume.- Literatur.